How Hyperbaric Facility Upgrading Benefits Both Patients And Staff

By Janine Hughes


In some situations it becomes important to breathe oxygen under pressure ranging from one and one-half to three times the amount considered normal. The process was used at first to prevent early deep-water divers from suffering from decompression sickness during rapid ascents, but today has become an important part of the treatment given to hospital patients with certain types of injuries. Hyperbaric facility upgrading improves the process for hospital staff and patients alike.

Patients enter and remains inside a type of chamber during compression. Normal air is composed of 21% oxygen, and there are somewhat limited benefits to simply breathing a pure mixture. The most medically significant results can be produced by providing a pure form of oxygen that is also under pressure, which measurably increases the amount of that gas present in the bloodstream.

For many patients, the outcome is faster and more extensive blood vessel formation, more consistent control of infection, reduced toxicity of some poisons, faster healing of resistant open wounds, and reduced tissue deterioration. Increasing the amount of oxygen delivered throughout the body decreases the probability of obstructions caused by gas bubbles, and encourages thorough healing. Treatments may be as few as two, or may take place daily.

Common injuries and illnesses that show improvement under this regimen not only encompass decompression-related problems, but today include controlling infections in diabetic wounds, encouraging more rapid recovery of crushing injuries, fighting threatening cases of gangrene, and combating the effects of radiation used to treat cancer victims. People recovering from serious burns accept grafts more readily, and carbon monoxide poisoning cases detoxify rapidly.

Facilities exist today primarily in hospitals, and consist of chambers that hold only one individual to those designed to accommodate up to twelve or more. A monoplace chamber has room for a single patient, may be tube shaped, and usually constructed of plastic. Patients recline inside, and a session may last up to two hours or more. The most common side effect is ear-popping due to pressure changes.

A specific diagnosis determines how much pressure is applied and for how long, in addition to patient history regarding therapeutic oxygen. Some people are scheduled on a daily basis, while others may need far fewer treatments. In most instances the procedure is completely safe, but is not recommended for those who currently have upper respiratory issues or other conditions that may force treatment delays.

Operational reviews and inspections normally take place regularly. They are often completed by medical consultants. Standard operations are analyzed, and associated staff members are asked about operational or procedural issues that have occurred. Logs detailing maintenance and daily use help define which type of improvements may be needed, or whether outdated equipment should be replaced.

Upgrading to state-of-the-art equipment benefits both patients and staff. Not only does an improved facility provide better care, but is important for hospital administrators controlling the financial bottom line. Consultants can provide solid statistics that reveal cost savings compared to the amount needed to invest in improvements. Installation of improved equipment is coordinated to prevent any interruption in patient scheduling.




About the Author:



No comments:

Post a Comment